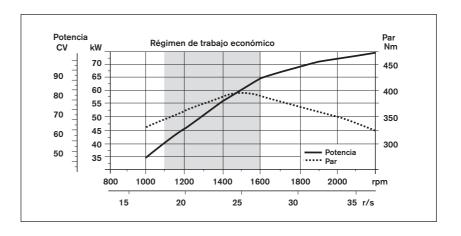
LA VOLVO L50E EN DETALLE

Value DAD LA EQ

Motor


Motor: motor diesel turboalimentado de 4 cilindros y de 4 litros de cilindrada con bombas individuales e inyectores convencionales. Depuración del aire: en tres etapas. Sistema de refrigeración: ventilador hidrostático controlado electrónicamente.

Wotor	VOIVO D4D LA E2
Potencia máxima a	36,7 r/s (2200 rpm)
SAE J1995 bruta	74,9 kW (102 CV)
ISO 9249, SAE J1349	73,9 kW (101 CV)
Par máximo a	25 r/s (1500 rpm)
SAE J1995 bruta	390 Nm
ISO 9249, SAE J1349	384 Nm
Régimen de trabajo economico	
	1100-1600 rpm
Cilindrada	4,0

Sistema eléctrico

Sistema de advertencia central: luz de advertencia central para las siguientes funciones (zumbador si hay una marcha introducida): presión de aceite del motor, presión de alimentación hidrostática, presión de aceite de la caja de cambios, presión de frenos, aplicación del freno de estacionamiento, nivel de aceite hidráulico, presión de dirección, temperatura de refrigerante, temperatura de la caja de cambios, sobrerrevolución del motor, sobrerrevolución de la caja de cambios, fallo de computadora, temperatura de aceite hidráulico.

Tensión		24 V
Baterías		2x12 V
Capacidad de baterías	2	x105 Ah
Capacidad de arranque en frío, a	prox.	690 A
Capacidad de reserva, aprox.		185 min
Capacidad del alternador	2240	W/80 A
Potencia del motor de arranque	4 kW	(5,4 CV)

Tren de fuerza

La transmisión consta de una bomba hidráulica, un motor hidráulico (ambos con desplazamiento variable) y una caja de cambios Power Shift Volvo de dos etapas, controlada por el mando selector de cambios o temporalmente con la función Kick-down. Ejes: Ejes Volvo con semiejes completamente flotantes y con reductores de cubo del tipo planetario y carcasas de eje de acero fundido. Eje delantero fijo y eje trasero oscilante. Diferencial: delantero y trasero convencional.

Velocidad máxima, adelante/atrás

Gama baja	19 km/h
Gama alta	40 km/h
Bloqueo del motor hidrostático	
Gama baja	4,6 km/h
Gama alta	10,8 km/h
Medidas con neumáticos	17.5 R25
Eje delantero/trasero	Volvo/AWB 10
Oscilación del eje trasero	±12°
Distancia libre als suelo 12º de	osc 365 mm

Sistema de frenos

Freno de servicio: sistema Volvo de dos circuitos con acumuladores cargados de nitrógeno. Frenos de disco húmedos refrigerados por circulación de aceite completamente herméticos, operados de forma hidráulica y montados en los cubos de rueda. Freno de estacionamiento: freno de tambor accionado de forma mecánica, montado en el eje de entrada del eje delantero. Existe la opción de un freno de estacionamiento accionado de forma electrohidráulica. Freno secundario: dobles circuitos de freno con acumuladores recargables. Un circuito o el freno de estacionamiento cumple todos los requisitos de seguridad. Norma: el sistema de frenos cumple los requisitos según la norma ISO 3450.

Número de discos de freno por rueda	
delantero/trasero	1/1
Acumuladores	3x0,5

Sistema de dirección

Sistema de dirección: dirección articulada hidrostática sensible a la carga. Alimentación del sistema: el sistema tiene una alimentación prioritaria de una bomba de pistón axial sensible a la carga con desplazamiento variable. Cilindros de dirección: dos cilindros de doble efecto.

Cilindros de dirección	2
Diámetro de cilindro	63 mm
Diámetro de vástago	40 mm
Carrera	320 mm
Presión de trabajo	21 MPa
Articulación máxima	±40°

Cabina

Instrumentación: toda la información importante se encuentra centralizada en el campo de visión del operador en la pantalla del sistema de control Contronic. Calefactor y deshelador: bobina de calefactor con aire filtrado y ventilador de cuatro velocidades. Salidas de aire del deshelador para todas las zonas acristaladas. Asiento del operador: asiento ergonómico con suspensión regulable y cinturón de seguridad retráctil. El asiento está montado en una consola que a su vez está instalado en la pared posterior de la cabina. El riel del asiento absorbe las fuerzas del cinturón de seguridad retráctil. Norma: la estructura de la cabina está probada y aprobada conforme a ROPS (ISO 3471) y a FOPS (ISO 3449). La cabina satisface todos los requisitos de seguridad de la norma ISO 6055 (Operator Overhead Protection - Industrial Trucks) y SAE J386 (Operator Restraint System).

Salidas de emergencia	1
Nivel sonoro en cabina según ISO 6396	LpA 68 dB (A)
Nivel sonoro externo según ISO 6395 (Directiva 2000/14/EC) según ISO 6395 ("Blauer Engel")	LwA 102 dB (A) LwA 100 dB (A)
Ventilación	9 m³/min
Capacidad de calefacción	11 kW
Acondicionador de aire (opci-	onal) 8 kW

Sistema hidráulico

Alimentación del sistema: 1 bomba de pistón axial sensible a la carga con desplazamiento variable. El sistema de dirección siempre tiene prioridad. Válvulas: válvula de dos carretes de doble efecto. La válvula principal está controlada por una válvula piloto de dos carretes. Función de elevación: la válvula tiene cuatro posiciones que incluyen elevación, retención, descenso y flotación. La función inductiva/magnética de elevación automática del brazo puede conectarse o desconectarse y es regulable a cualquier posición entre el alcance máximo y la altura de elevación máxima. Función de basculación: la válvula tiene tres funciones que incluyen retroceso, retención y vuelco. El posicionador automático inductivo/ magnético se puede regular en el ángulo de cuchara que se desee. Cilindros: cilindros de doble efecto para todas las funciones. Filtro: filtrado de todo el caudal a través de un cartucho filtrante de 20 micras (absoluto).

Presión de trabajo	26,0 MPa
Caudal	120 l/min
a	10 MPa
y régimen del motor	36,7 r/s (2200 r/min)
Sistema servo Presión de trabajo	3,0 MPa
Tiempos de ciclo	
Elevación*	5,4 s
Volteo*	1,1 s
Descenso, vacía	3,0 s
Tiempo total de ciclo	9,5 s

 $^{^{\}star}$ con carga según ISO 14397 y SAE J818

Sistema de brazo elevador

Cinemática TP (TP linkage) con par de arranque elevado y actuación paralela en todo el recorrido de elevación.

Cilindros de elevación	2
Diámetro de cilindro	100 mm
Diámetro de vástago	70 mm
Carrera	669 mm
Cilindro de volteo	1
Diámetro de cilindro	125 mm
Diámetro de vástago	70 mm
Carrera	434 mm

Servicio

Accesibilidad de servicio: puertas de servicio grandes y fáciles de abrir con muelles de gas. Rejilla giratoria del radiador. Posibilidad de registrar y analizar datos para facilitar la localización y solución de fallos.

Capacidades de depósitos

Deposito de combustible	1971
Refrigerante del motor	19
Depósito de aceite hidráulico	65 1
Aceite de transmisión	6,5
Aceite del motor	12
Ejes delanteros/traseros	22/22

ESPECIFICACIONES

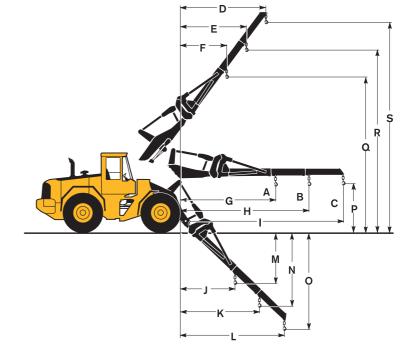
Donde sea aplicable, las especificaciones y las

dimensiones están de acuerdo con las normas ISO 7131, SAE J732, ISO 7546, SAE J742, ISO

14397, SAE J818.

Neumáticos: 17.5 R25 L2

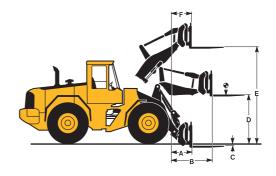
В	5410	mm
С	2750	mm
D	400	mm
F	3030	mm
G	2130	mm
J	3470	mm
K	3740	mm
0	52	0
P _{max}	45	0
R	43	0
R ₁ *	48	0
S	90	0
Т	77	mm
U	430	mm
Χ	1750	mm
Υ	2200	mm
Z	3060	mm
a_2	4880	mm
a ₃	2680	mm
a ₄	±40	0


* Posición de acarreo SAE

Neumáticos: 17.5 R25 L2

Α*	1120	kg
B*	890	kg
C*	720	kg
D	2880	mm
Е	2220	mm
F	1630	mm
G	3290	mm
Н	4320	mm
1	5460	mm
J	550	mm
K	690	mm
L	830	mm
М	2300	mm
Ν	3300	mm
0	4450	mm
Р	1470	mm
Q	5060	mm
R	5910	mm
S	6840	mm

Núm. de pedido: 92007 Peso operativo: 8570 kg


B ₂ B ₂	R R R G G T T E
	s'

Neumáticos: 17.5 R25 L2

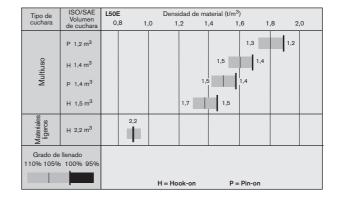
Menii	iaticos.	17.5 KZ5
А	820	kg
В	1580	kg
С	31	mm
D	1710	mm
Е	3520	mm
F	750	mm

Núm. de pedido púa horquilla (por brazo): 92007
Longitud: 1200 mm
Anchura: 1500 mm
Peso operativo nominal*: 2730 kg
a una distancia del centro de la carga: 600 mm
Peso operativo: 8630 kg
* conf. a la norma EN 474-3, suelo firme y llano

		USO GENERAL					MATERIAL LIGERO				
Neumáticos 17.5 R25 L2											
		Dientes	Dientes	Cuchilla atornillada	Cuchilla atornillada	Dientes	Dientes	Cuchilla atornillada	Cuchilla atornillada	Cuchilla atornillada	Cuchilla atornillada
Volumen, colmada ISO/SAE	m ³	1,2	1,2	1,3	1,3	1,4	1,4	1,5	1,5	2,2	3,9
Volumen con factor de llenado de 110%	m ³	1,3	1,3	1,4	1,4	1,5	1,5	1,7	1,7	2,4	4,3
Carga de vuelco estático, recta	kg	6000	5720	5920	5650	5900	5630	5820	5560	5240	4800
girada 35°	kg	5400	5130	5320	5060	5300	5040	5230	4970	4670	4240
en giro total	kg	5220	4960	5150	4890	5120	4870	5050	4800	4510	4080
Fuerza de arranque	kN	70,9	65,6	66,4	61,7	65,1	60,6	61,2	57,3	46,3	36,2
А	mm	6600	6670	6440	6510	6690	6750	6530	6590	6830	7230
Е	mm	1010	1080	860	920	1090	1160	940	1000	1250	1630
H*)	mm	2770	2730	2870	2830	2710	2670	2820	2770	2600	2340
L	mm	4750	4790	4750	4790	4820	4860	4820	4860	4950	5410
M*)	mm	1050	1100	940	990	1110	1160	1000	1050	1220	1490
N*)	mm	1560	1590	1510	1540	1590	1610	1540	1560	1580	1630
V	mm	2300	2300	2300	2300	2300	2300	2300	2300	2380	2500
a ₁ diámetro de giro	mm	10 690	10 710	10 610	10 630	10 730	10 750	10 650	10 670	10 900	11 240
Peso operativo	kg	8560	8720	8590	8750	8610	8770	8640	8800	8900	9180

^{*)} Medido en la punta de los dientes de la cuchara o en cuchilla atornillada. Altura de vaciado al borde ede la cuchara. Medida en ángulo de vaciado de 45°.

Nota: Sólo se aplica a implementos originales de Volvo.


Diagrama De Selección De Cuchara

La cuchara seleccionada viene determinada por la densidad del material y por el factor de llenado de la cuchara previsto.

El volumen real de la cuchara suele ser mayor que la capacidad nominal debido a las características de la cinemática TP, incluyendo un diseño de cuchara abierta, buenos ángulos de cierre en todas las posiciones y buenas prestaciones de llenado de la cuchara. El ejemplo representa una configuración de brazo estándar. Ejemplo: Arena y gravilla. Factor de llenado ~ 105%. Densidad 1,6 t/m³. Resultado: la cuchara de 1,4 m³ lleva 1,5 m³. Para una estabilidad óptima, consultar siempre el diagrama de selección de cuchara.

Material	Llenado de aterial cuchara, %		Densidad de material, t/m³	ISO/SAE volumen, m³	Volumen actual de cuchara, m³		
Tierra/Arcilla	~ 110		~ 1,80	1,2	~ 1,3		
		\/	~ 1,50	1,4	~ 1,5		
			~ 1,30	1,5	~ 1,7		
Arena/Gravil	la ~ 105		~ 1,90	1,2	~ 1,25		
			~ 1,60	1,4	~ 1,5		
			~ 1,30	1,5	~ 1,6		
Grava	~ 100		~ 1,90	1,2	~ 1,2		
	100	17	~ 1,80	1,4	~ 1,4		
			~ 1,50	1,5	~ 1,5		
Roca	≤100	\bigcirc	~ 1,70	1,2	~ 1,2		

El tamaño de las cucharas para roca está optimizado más para la capacidad máxima de penetración y llenado que para la densidad del material.

Datos De Operación Suplementarios

Neumáticos 17.5 R25 L2	2	15.5 R25 L2	Montado en eje guardabarros	
Ancho sobre neumáticos	mm	-60	-	
Altura libre sobre suelo	mm	-30	-	
Carga de vuelco, totalmente girada	kg	-190	+170	
Peso operativo	kg	-320	+150	